- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Andersen, Daniel (2)
-
Arcand, William (2)
-
Bergeron, William (2)
-
Bernays, Jonathan (2)
-
Bestor, David (2)
-
Buluc, Aydin (2)
-
Byun, Chansup (2)
-
Claffy, K (2)
-
Davis, Timothy (2)
-
Gadepally, Vijay (2)
-
Houle, Micheal (2)
-
Hubbell, Matthew (2)
-
Jones, Michael (2)
-
Kepner, Jeremy (2)
-
Klein, Anna (2)
-
Meiners, Chad (2)
-
Michaleas, Peter (2)
-
Milechin, Lauren (2)
-
Mullen, Julie (2)
-
Pisharody, Sandeep (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Internet has become a critical component of modern civilization requiring scientific exploration akin to endeavors to understand the land, sea, air, and space environments. Understanding the baseline statistical distributions of traffic are essential to the scientific understanding of the Internet. Correlating data from different Internet observatories and outposts can be a useful tool for gaining insights into these distributions. This work compares observed sources from the largest Internet telescope (the CAIDA darknet telescope) with those from a commercial outpost (the GreyNoise honeyfarm). Neither of these locations actively emit Internet traffic and provide distinct observations of unsolicited Internet traffic (primarily botnets and scanners). Newly developed GraphBLAS hyperspace matrices and D4M associative array technologies enable the efficient analysis of these data on significant scales. The CAIDA sources are well approximated by a Zipf-Mandelbrot distribution. Over a 6-month period 70% of the brightest (highest frequency) sources in the CAIDA telescope are consistently detected by coeval observations in the GreyNoise honeyfarm. This overlap drops as the sources dim (reduce frequency) and as the time difference between the observations grows. The probability of seeing a CAIDA source is proportional to the logarithm of the brightness. The temporal correlations are well described by a modified Cauchy distribution. These observations are consistent with a correlated high frequency beam of sources that drifts on a time scale of a month.more » « less
-
Kepner, Jeremy; Jones, Michael; Andersen, Daniel; Buluc, Aydin; Byun, Chansup; Claffy, K; Davis, Timothy; Arcand, William; Bernays, Jonathan; Bestor, David; et al (, 2021 IEEE High Performance Extreme Computing Conference (HPEC))The Internet has never been more important to our society, and understanding the behavior of the Internet is essential. The Center for Applied Internet Data Analysis (CAIDA) Telescope observes a continuous stream of packets from an unsolicited darkspace representing 1/256 of the Internet. During 2019 and 2020 over 40,000,000,000,000 unique packets were collected representing the largest ever assembled public corpus of Internet traffic. Using the combined resources of the Supercomputing Centers at UC San Diego, Lawrence Berkeley National Laboratory, and MIT, the spatial temporal structure of anonymized source-destination pairs from the CAIDA Telescope data has been analyzed with GraphBLAS hierarchical hyper-sparse matrices. These analyses provide unique insight on this unsolicited Internet darkspace traffic with the discovery of many previously unseen scaling relations. The data show a significant sustained increase in unsolicited traffic corresponding to the start of the COVID19 pandemic, but relatively little change in the underlying scaling relations associated with unique sources, source fan-outs, unique links, destination fan-ins, and unique destinations. This work provides a demonstration of the practical feasibility and benefit of the safe collection and analysis of significant quantities of anonymized Internet traffic.more » « less
An official website of the United States government
